PAILLIER ZERO-KNOWLEDGE
PROOF

e

TAYLOR FOX DAHLIN, DAYLIGHTING SOCIETY

December 17, 2016

Abstract

Suppose two parties are communicating, with a third party passing the
messages from one party to the other. However, this third party will
only allow the message through if it deems the message acceptable,
presumably from a pre-approved list of messages. Using the Paillier
cryptosystem, it is possible for this third party to determine whether
the encrypted message being passed is a member of this pre-approved
list, without ever seeing the actual contents of the message, nor knowing
which message it is. The process for doing this is detailed below.

CONTENTS

reparation 2

|

[3 Commitment 2

E

allenge 2
4.1 Interactive] 2
[4.2 Non-Interactive| 2

i

esponse; 3

3
1 INTRODUCTION

Let ¢ be the Paillier encryption of your message m using random value r and
public key (g, n) such that:

c=g"*r" mod n?

Furthermore, let Z;, be the set of integers coprime to n, and let b be the
preselected bit-string length used during the proof.
Suppose you have K valid messages,

my, mp, ms, ..., My

and this set contains your message m. In order for an external party who
does not know m or r determine whether c is an encryption of some m;,
the following zero-knowledge proof can be performed. Using these valid
messages, you can calculate the following set of values,

uy, Uz, uz, ..., Ug

2 PREPARATION

using the following formula:

c
u; = o mod n?
This is useful for our calculations because of the special property where
m; =m:

u; = = =" mod n?

2 PREPARATION
First, the prover randomly selects a set of values,

b : .
e1,€2,€3,....ex €27 < min(p,q);z1,22,23, .-, 2k € Ly,

without selecting e;; or z;;, as these require calculation to determine.
Next, the prover randomly selects w € Zj;.

3 COMMITMENT
Prover calculates the set of values,

ay,an,as, ..., ag
such that for all a; (except where m; = m), this equation holds:
zh
a; = ~L mod n?

usi
i

For m; = m, we calculate a; as follows:

a; = w" mod n?

The prover then sends ay, a3, a3, ..., aj to the verifier.

4 CHALLENGE

At this point of the zero-knowledge proof there are two ways to proceed,
at the discretion of the implementer: the proof can be be interactive, or
non-interactive. Both implementations generate some bit-string e, which is
used by the prover in further calculations for their proof. The probability of
forgery given bit-string e with length b, is:

P(forgery) = 5;-

4.1 Interactive

Upon receiving the commitment from the prover, the verifier can randomly
generate a bit-string e of length b and send this to the prover.

4.2 Non-Interactive

In a non-interactive implementation, the hash of the commitment is used for
the bit-string e. A secure hashing algorithm ensures that crafting the hash
collisions is exceptionally unlikely, which allows the prover to use this in
place of further interactions with the verifier. This is the method used in the
Ruby gem made available by the Daylighting Society}*

*See https://paillier.daylightingsociety.org

https://paillier.daylightingsociety.org

5 RESPONSE

5 RESPONSE

The prover now calculates z; and ¢; for m; = m as follows:

K
€ = €challenge — Z €k
k=1

z;=wx*r% modn

After performing these calculations, the prover sends the sets of values,

€1,€2,€3,...,€k;21,22,23, ..., Zf

to the verifier, including the newly calculated e; and z; in their appropriate
positions in these sets.

6 VERIFICATION

The verifier now has all g;, ¢;, and z; from the prover, and can determine
whether the prover performed their calculations correctly. First, the verifier
confirms the following:

K

b
E €k = C€challenger mod 2
k=1

If this fails, then the prover did not follow the rules or attempted to cheat.
Next, the verifier confirms the following:
z} = apxu* mod n?

For all k such that my # m, this is guaranteed as it is pre-calculated by
the prover. For k such that m = m, this calculation works as follows:
Recall the following:

u; =" mod n?

z;=wx*r% modn

a; = w" mod n?
With this in mind, we can substitute each element in the verification

equation:

n__ 23 2
zx = ag* . mod n

(wr)" = W * ()% = W" *x (r*)" = (w*r%)" mod n?
If this fails, then the prover did not follow the rules or attempted to cheat.

If both tests have passed however, the verifier now has proof that the
encrypted message is from the set of valid messages, having never seen the
plaintext, and without being able to solve for the plaintext.

	Introduction
	Preparation
	Commitment
	Challenge
	Interactive
	Non-Interactive

	Response
	Verification

