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Abstract

Suppose two parties are communicating, with a third party passing the
messages from one party to the other. However, this third party will
only allow the message through if it deems the message acceptable,
presumably from a pre-approved list of messages. Using the Paillier
cryptosystem, it is possible for this third party to determine whether
the encrypted message being passed is a member of this pre-approved
list, without ever seeing the actual contents of the message, nor knowing
which message it is. The process for doing this is detailed below.
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1 introduction

Let c be the Paillier encryption of your message m using random value r and
public key (g, n) such that:

c = gm ∗ rn mod n2

Furthermore, let Z∗n be the set of integers coprime to n, and let b be the
preselected bit-string length used during the proof.

Suppose you have K valid messages,

m1, m2, m3, ..., mk

and this set contains your message m. In order for an external party who
does not know m or r determine whether c is an encryption of some mi,
the following zero-knowledge proof can be performed. Using these valid
messages, you can calculate the following set of values,

u1, u2, u3, ..., uk
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2 preparation 2

using the following formula:

ui =
c

gmi
mod n2

This is useful for our calculations because of the special property where
mi = m:

ui =
c

gmi
=

gm ∗ rn

gm = rn mod n2

2 preparation

First, the prover randomly selects a set of values,

e1, e2, e3, ..., ek ∈ 2b < min(p, q); z1, z2, z3, ..., zk ∈ Z∗n
without selecting em or zm, as these require calculation to determine.
Next, the prover randomly selects ω ∈ Z∗n.

3 commitment

Prover calculates the set of values,

a1, a2, a3, ..., ak

such that for all ai (except where mi = m), this equation holds:

ai =
zn

i
uei

i
mod n2

For mi = m, we calculate ai as follows:

ai = ωn mod n2

The prover then sends a1, a2, a3, ..., ak to the verifier.

4 challenge

At this point of the zero-knowledge proof there are two ways to proceed,
at the discretion of the implementer: the proof can be be interactive, or
non-interactive. Both implementations generate some bit-string e, which is
used by the prover in further calculations for their proof. The probability of
forgery given bit-string e with length be is:

P( f orgery) =
1

2be

4.1 Interactive

Upon receiving the commitment from the prover, the verifier can randomly
generate a bit-string e of length b and send this to the prover.

4.2 Non-Interactive

In a non-interactive implementation, the hash of the commitment is used for
the bit-string e. A secure hashing algorithm ensures that crafting the hash
collisions is exceptionally unlikely, which allows the prover to use this in
place of further interactions with the verifier. This is the method used in the
Ruby gem made available by the Daylighting Society.∗

∗See https://paillier.daylightingsociety.org

https://paillier.daylightingsociety.org


5 response 3

5 response

The prover now calculates zi and ei for mi = m as follows:

ei = echallenge −
K

∑
k=1

ek

zi = ω ∗ rei mod n

After performing these calculations, the prover sends the sets of values,

e1, e2, e3, ..., ek; z1, z2, z3, ..., zk

to the verifier, including the newly calculated ei and zi in their appropriate
positions in these sets.

6 verification

The verifier now has all ai, ei, and zi from the prover, and can determine
whether the prover performed their calculations correctly. First, the verifier
confirms the following:

K

∑
k=1

ek = echallenger mod 2b

If this fails, then the prover did not follow the rules or attempted to cheat.
Next, the verifier confirms the following:

zn
k = ak ∗ uek

k mod n2

For all k such that mk 6= m, this is guaranteed as it is pre-calculated by
the prover. For k such that mk = m, this calculation works as follows:

Recall the following:

ui = rn mod n2

zi = ω ∗ rei mod n

ai = ωn mod n2

With this in mind, we can substitute each element in the verification
equation:

zn
k = ak ∗ uek

k mod n2

(ω ∗ rei )n = ωn ∗ (rn)ek = ωn ∗ (rek )n = (ω ∗ rei )n mod n2

If this fails, then the prover did not follow the rules or attempted to cheat.

If both tests have passed however, the verifier now has proof that the
encrypted message is from the set of valid messages, having never seen the
plaintext, and without being able to solve for the plaintext.
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